Solution 7

Supplementary Problems

1. Let f be a function on $[a, b]$. Verify that the parametric curve $x \mapsto x \mathbf{i}+f(x) \mathbf{j}$ is regular provided f is continuously differentiable on (a, b).
Solution. Let the curve be $\mathbf{c}(x)=x \mathbf{i}+f(x) \mathbf{j}$. We have $\mathbf{c}^{\prime}(t)=\mathbf{i}+f^{\prime}(x) \mathbf{j}$ and

$$
\left|\mathbf{c}^{\prime}(t)\right|=\sqrt{1+\left(f^{\prime}(x)\right)^{2}}>0
$$

hence \mathbf{c} is regular.
2. Let \mathbf{c} be a regular parametric curve on $[a, b]$. Find a parametric curve γ whose image is the same as \mathbf{c} but reverse the orientation.
Solution. Define

$$
\gamma(t)=\mathbf{c}(a+b-t) \quad t \in[a, b] .
$$

Then $\gamma(a)=\mathbf{c}(b)$ and $\gamma(b)=\mathbf{c}(a)$. Moreover, $\gamma^{\prime}(t)=-\mathbf{c}^{\prime}(a+b-t)$ so $\left|\gamma^{\prime}(t)\right|=\mid \mathbf{c}^{\prime}(a+b-$ $t) \mid>0, \gamma$ is a regular parametric curve.
3. Let \mathbf{c} be a parametric curve from $[a, b]$ to C. Another parametric curve γ is called a reparametrization of \mathbf{c} if $\gamma(t)=\mathbf{c}(\varphi(t))$ where φ is a continuously differentiable map from $[\alpha, \beta]$ one-to-one onto $[a, b]$. Show that

$$
\int_{a}^{b} f(\mathbf{c}(t))\left|\mathbf{c}^{\prime}(t)\right| d t=\int_{\alpha}^{\beta} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t
$$

Solution. From the relation $\gamma(t)=\mathbf{c}(\varphi(t))$ we have

$$
\gamma^{\prime}(t)=\mathbf{c}^{\prime}(\varphi(t)) \varphi^{\prime}(t)
$$

First consider the case φ maps α to a and β to b. Then $\varphi^{\prime}>0$. We have

$$
\begin{aligned}
\int_{\alpha}^{\beta} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t & =\int_{\alpha}^{\beta} f\left(\mathbf{c}(\varphi(t))\left|\mathbf{c}^{\prime}(\varphi(t)) \varphi^{\prime}(t)\right| d t\right. \\
& \left.=\int_{a}^{b} f(\mathbf{c}(\tau))\left|\mathbf{c}^{\prime}(\tau)\right| d \tau \quad \text { (letting } \tau=\varphi(t)\right)
\end{aligned}
$$

When φ maps α to b and β to $a, \varphi^{\prime}<0$. We have

$$
\begin{aligned}
\int_{\alpha}^{\beta} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t & =\int_{\alpha}^{\beta} f\left(\mathbf{c}(\varphi(t))\left|\mathbf{c}^{\prime}(\varphi(t)) \varphi^{\prime}(t)\right| d t\right. \\
& =\int_{b}^{a} f(\mathbf{c}(\tau))\left|\mathbf{c}^{\prime}(\tau)\right|(-1) d \tau \quad(\operatorname{letting} \tau=\varphi(t)) \\
& =\int_{a}^{b} f(\mathbf{c}(\tau))\left|\mathbf{c}^{\prime}(\tau)\right| d \tau
\end{aligned}
$$

Note. It was explained in class that the line integral of functions is independent of parametrization based on the Riemann sum approach. Here a more rigorous direct proof is present.

